Strategies for Enriching Variant Coverage in Candidate Disease Loci on a Multiethnic Genotyping Array
نویسندگان
چکیده
Investigating genetic architecture of complex traits in ancestrally diverse populations is imperative to understand the etiology of disease. However, the current paucity of genetic research in people of African and Latin American ancestry, Hispanic and indigenous peoples in the United States is likely to exacerbate existing health disparities for many common diseases. The Population Architecture using Genomics and Epidemiology, Phase II (PAGE II), Study was initiated in 2013 by the National Human Genome Research Institute to expand our understanding of complex trait loci in ethnically diverse and well characterized study populations. To meet this goal, the Multi-Ethnic Genotyping Array (MEGA) was designed to substantially improve fine-mapping and functional discovery by increasing variant coverage across multiple ethnicities at known loci for metabolic, cardiovascular, renal, inflammatory, anthropometric, and a variety of lifestyle traits. Studying the frequency distribution of clinically relevant mutations, putative risk alleles, and known functional variants across multiple populations will provide important insight into the genetic architecture of complex diseases and facilitate the discovery of novel, sometimes population-specific, disease associations. DNA samples from 51,650 self-identified African ancestry (17,328), Hispanic/Latino (22,379), Asian/Pacific Islander (8,640), and American Indian (653) and an additional 2,650 participants of either South Asian or European ancestry, and other reference panels have been genotyped on MEGA by PAGE II. MEGA was designed as a new resource for studying ancestrally diverse populations. Here, we describe the methodology for selecting trait-specific content for use in multi-ethnic populations and how enriching MEGA for this content may contribute to deeper biological understanding of the genetic etiology of complex disease.
منابع مشابه
A statistical variant calling approach from pedigree information and local haplotyping with phase informative reads
MOTIVATION Variant calling from genome-wide sequencing data is essential for the analysis of disease-causing mutations and elucidation of disease mechanisms. However, variant calling in low coverage regions is difficult due to sequence read errors and mapping errors. Hence, variant calling approaches that are robust to low coverage data are demanded. RESULTS We propose a new variant calling a...
متن کاملAddictions biology: haplotype-based analysis for 130 candidate genes on a single array.
AIMS To develop a panel of markers able to extract full haplotype information for candidate genes in alcoholism, other addictions and disorders of mood and anxiety. METHODS A total of 130 genes were haplotype tagged and genotyped in 7 case/control populations and 51 reference populations using Illumina GoldenGate SNP genotyping technology, determining haplotype coverage. We also constructed a...
متن کاملSimulation of Finnish population history, guided by empirical genetic data, to assess power of rare-variant tests in Finland.
Finnish samples have been extensively utilized in studying single-gene disorders, where the founder effect has clearly aided in discovery, and more recently in genome-wide association studies of complex traits, where the founder effect has had less obvious impacts. As the field starts to explore rare variants' contribution to polygenic traits, it is of great importance to characterize and confi...
متن کاملHomozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11).
The identification of mutations in genes that cause human diseases has largely been accomplished through the use of positional cloning, which relies on linkage mapping. In studies of rare diseases, the resolution of linkage mapping is limited by the number of available meioses and informative marker density. One recent advance is the development of high-density SNP microarrays for genotyping. T...
متن کاملHigh-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS).
This study reports the use of Genotyping-by-Sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of recombinant inbred lines (RILs) of an intra-specific mapping population of chickpea contrasting for seed traits. A total of 119,672 raw SNPs were discovered, which after stringent filtering revealed 3,977 high quality SNPs of which 39.5% were present in genic regions. Compar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016